15AE73

Seventh Semester B.E. Degree Examination, Aug./Sept.2020

Aircraft Stability and Control

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Briefly explain Fuselage contribution to stability using Multhopp's method. (08 Marks)

b. A wing-body model is tested in a subsonic wind tunnel. The lift is found to be zero at a geometric angle of attack $\alpha = -1.5^{\circ}$. At $\alpha = 5^{\circ}$, the lift coefficient is measured as 0.52. Also, at $\alpha = 1.0^{\circ}$ and 7.88°, the moment coefficients about the center of gravity are measured as -0.01 and 0.05, respectively. The center of gravity is located at 0.35C. Calculate the location of the aerodynamic center and the value of $C_{m_{ac.,b}}$. (08 Marks)

OR

2 a. Derive an expression for elevator angle verses equilibrium lift coefficient. (10 Marks)

b. For the given general aviation airplane, its forward most center of gravity position is as follows: $C_{m_{eg}} = -0.20 - 0.035 \,\alpha$ where α is in degrees. Estimate flap effectiveness parameter of the airplane at the landing angle of attack of 10°. Assume that the elevator angle is constrained to $+20^{\circ}$ and -25° .

Reference geometry: $S = 184 \text{ m}^2$, $S_H = 43 \text{ m}^2$, $C_{L_{\alpha_t}} = 3.9 \text{ per rad}$, b = 33.4 m, $\ell_t = 16 \text{ m}$, c = 5.7 m, $\eta = 1$.

Module-2

3 a. How Hinge Moment parameters can be estimated? (06 Marks)

b. Derive an expression for stick-free neutral point with necessary graph and compare it with stick-fixed neutral point. (10 Marks)

OR

4 a. Obtain an expression for stick force gradients, $\frac{dF}{dV} = K_{\rho}V(A +_{h_{\delta_t}} \delta_t)$. (10 Marks)

b. Write a short note on Weather Cocking effect.

(06 Marks)

Module-3

5 a. Obtain a relationship to rate of roll for a given stick force varies inversely with the density of the air and with the velocity, V and also inversely with the span to the fourth power.

(10 Marks)

b. Explain Dihedral effect.

(06 Marks)

OR

1 of 2

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

6 a. For the NAVION airplane, estimate the roll control power, $C_{l_{\delta_a}}$. Assume that the wing and aileron geometry are as:

b/2 = 16.7 m, λ = 0.54, C_r = 7.2 m, C_t = 3.9 m, y_1 = 11.1 m, y_2 = 16 m, s = 184 m², $C_{L_{\alpha_{00}}}$ = 4.44/rad, τ = 0.36.

Take for tapered wing; $C = C_r = \left[1 + \left(\frac{\lambda - 1}{b/2}\right)\right]$

(06 Marks)

b. Develop a governing equation for an airplane in pure pitching motion and discuss the angle of attack time history of a pitching model for various damping ratios. (10 Marks)

Module-4

7 a. Briefly explain gravitational and thrust force.

(08 Marks)

b. Starting with X-force equation, use the small disturbance theory to determine the linearized force equation. Assume a steady level flight for the reference flight conditions. (08 Marks)

OR

8 a. Derive an expression for change in forward velocity.

(08 Marks)

b. Obtain the derivatives due to the time rate of change of the angle of attack.

(08 Marks)

Module-5

9 a. Determine whether the characteristic equations given below have stable or unstable roots:

 $i) \quad \lambda^3 + 6\lambda^2 + 12\lambda + 8 = 0$

ii) $2\lambda^3 + 4\lambda^2 + 4\lambda + 12 = 0$

(08 Marks)

b. Briefly explain Dutch roll and spiral instability with relevant sketches

(08 Marks)

OI

- Write short notes on:
 - a. Wind shear
 - b. Flying qualities
 - c. Cooper-Harper scale
 - d. Auto-rotation and spin

(16 Marks)